Discriminating Against New Classes: One-class versus Multi-class Classification
نویسندگان
چکیده
Many applications require the ability to identify data that is anomalous with respect to a target group of observations, in the sense of belonging to a new, previously unseen ‘attacker’ class. One possible approach to this kind of verification problem is one-class classification, learning a description of the target class concerned based solely on data from this class. However, if known non-target classes are available at training time, it is also possible to use standard multi-class or two-class classification, exploiting the negative data to infer a description of the target class. In this paper we assume that this scenario holds and investigate under what conditions multi-class and two-class Näıve Bayes classifiers are preferable to the corresponding one-class model when the aim is to identify examples from a new ‘attacker’ class. To this end we first identify a way of performing a fair comparison between the techniques concerned and present an adaptation of standard cross-validation. This is one of the main contributions of the paper. Based on the experimental results obtained, we then show under what conditions which group of techniques is likely to be preferable. Our main finding is that multi-class and two-class classification becomes preferable to one-class classification when a sufficiently large number of non-target classes is available.
منابع مشابه
Fault diagnosis in a distillation column using a support vector machine based classifier
Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...
متن کاملAll-Pairs Evolving Fuzzy Classifiers for On-line Multi-Class Classification Problems
In this paper, we propose a novel design of evolving fuzzy classifiers in case of multi-class classification problems. Therefore, we exploit the concept of all-pairs aka all-versus-all classification using binary classifiers for each pair of classes, which has some advantages over direct multi-class as well as one-versus-rest classification variants. Regressionbased as well as singleton class l...
متن کاملAssociation Between Metallo-β-lactamases and Integrons with Multi-Drug Resistance in Pseudomonas aeruginosa Isolates
Pseudomonas aeruginosa is among the most important pathogens in the nosocomial infections. A genetic mobile element, the integron, is one of the major agents involved in dissemination of multi-drug resistance among gram negative bacteria. During a descriptive study from October 2009 to August 2010, some 130 P. aeruginosa clinical isolates were collected from different wards of three hospitals...
متن کاملتوسعه دو مدل ریاضی کارا برای مسئله کولهپشتی چند انتخابی فازی
Multi-choice knapsack problem is a branch of regular knapsack problem where the objects are classified in different classes and each class has one and only one representative in final solution. Although it is assumed that each object belongs to just one class, sometimes this assumption is not valid in real problems. In this case an object may belong to the several classes. In fuzzy multi-choic...
متن کاملThe effect of flipped class approach on math learning of students in multi-grade classes
The purpose of this study was to investigate the effect of the flipped class approach on math learning of students in multi-grade classes. This research is a quasi-experimental design of pre-test-post-test-follow-up with a control group. After studying and designing educational work, 36 elementary school students studying in two multi-level schools in the academic year 1300-1400 in Kohgiluyeh a...
متن کامل